Greenhouse Design

Presented by: Dr. Nadia Sabeh, PE President, Dr. Greenhouse, Inc.

Dr. Greenhouse

Introduction

- 25 years ago...Mushroom Farm Internship
- > PhD in Agricultural Engineering
 - > University of Arizona (CEAC)
 - > GH Evaporative Cooling
 - > WUE and HPF strategies
 - > Natural Ventilation
 - > Wind tunnel studies in Japan
- > PE in Mechanical Engineering
 > HVAC Design and LEED
 > Dr. Greenhouse, Inc.

Dr. Greenhouse, Inc. (Est. 2017, Sacramento, CA)

- Mechanical & Agricultural Engineering Firm
- Design and Optimization of HVAC and Environmental Control
- Greenhouses and Indoor Grows
- > Mix of Projects
- Mix of Clients

Dr. Greenhouse, Inc. (Est. 2017)

Greenhouse Services we Provide

- Cooling, Heating, Humidity Calculations
- > Weather Analysis
 - Site selection
 - > HVAC equipment selection
 - > HVAC/Lighting optimization
 - > Supp. Lighting needs
- **GH** Quote 3rd Party Review
- > Controls sequencing
- Custom HVAC design
- Code Analysis
- > Education and Training

Questions I get asked frequently

- 1. What is a greenhouse?
- 2. Can you grow consistently year-round in a GH?
- 3. Are GHs more sustainable than indoor grows?
- 4. Are GHs cheaper than indoor grows?
- 5. Can you grow the same quality crop as indoor?

What is a Greenhouse?

Greenhouse Structures/Styles

Why a Greenhouse?

Why a Greenhouse?

SUNLIGHT!!

"Free" Light Energy

Why a Greenhouse?

SUNLIGHT!!

"Free" Light Energy, but...

Sunlight not equal everywhere or year-round or under every cover.

Daily Light Integral (DLI)

(Runkle, 2006)

Leafy Greens = 12-18 mol/m²/day Strawberries = 20-25 mol/m²/day Tomatoes = 30-35 mol/m²/day Cannabis Veg = 30-40 mol/m²/day Cannabis Flower > 40 mol/m²/day

Figure 1. Maps of monthly outdoor DLI throughout the United States. Source: Mapping monthly distribution of daily light integrals across the contiguous United States (Pamela C. Korczynski, Joanne Logan, and James E. Faust; Clemson University, 2002)

Sunlight Availability: Location and Seasonal Differences

Light: More than just PAR and DLI

With light comes heat

The Greenhouse Effect!

Great in the Winter, Horrible in the Summer.

Light and Heat: Greenhouse Covers

Greenhouse Covers Comparison

COVER	LIGHT TRANSMISSIVITY	HEAT TRAPPING	COMMENTS
Glass	High (> 93%)	High	Great for northern, cold climates
Plastic (polyethylene, polycarbonate)	High (88-93%)	Low	Good for sunbelt, but breaks down in sun
Acrylic	High (88-93%)	Low	Good for sunbelt, but collects dust and gets brittle in sun
New: spectrum selective, UV inhibiting, IR inhibiting, solar electric	Medium (< 90%)	Low	Focus on selecting wavelengths for plants

Greenhouse Cover: California's New Energy Code

California Energy Code, Controlled Environment Horticulture Mandatory Measures (Title 24, Part 6, Section 120.6(h), Effective Jan 1, 2023)

Indoor Growing	Greenhouses		
Horticultural Lighting	Horticultural Lighting		
- PPE ≥ 1.9 μmol/Joule	- PPE ≥ 1.7 μmol/Joule		
Electrical Power Distribution	Building Envelope (Air-Conditioned		
- Design electrical panels such that electrical	Greenhouses)		
energy use of horticultural lighting systems can	- Opaque walls and roof: comply w/Section 120.7		
be monitored and measured	- Transparent covers: glazings must have two or		
	more layers separated by air, argon, or other gas		
Dehumidification Space-Conditioning Systems			
- Standalone dehumidifiers: comply with federal	- Air conditioners, chillers, heaters, fans: comply		
appliance standards with all applicable requirements (eg. mech			
 Integrated HVAC system: meet 75% of plumbing, and electrical codes associated v 			
dehumidification reheat needs w/heat recovery	HVAC systems)		
- Chilled water system: meet 75% of			
dehumidification reheat needs w/heat recovery			
- Desiccant system: Only allowed when target			
dewpoint ≤ 50F			
All New CEH Operations			
Time-switch lighting controls:			
- Install automatic or astronomical time-switch controls that can be programmed to operate lights at			
a minimum of two levels (<u>Section 110.9(b)1</u>)			
 Install controls that can automatically shut off lights (<u>Section 130.4(a)4</u>) 			
- Inspect and test the functionality of time-switch controls (applicable sections of <u>NA7.6.2</u>)			
Multilevel lighting controls: Horticultural lighting levels must be adjustable up and down (Section			
<u>130.1(b)</u> .			

CEH Mandatory Measures: Greenhouses: <u>Building Envelope</u>

- Conditioned Greenhouses, <u>Building Envelope</u>. Conditioned greenhouses shall meet the following requirements:
 - A. Opaque wall and opaque <u>roof</u> assembly shall meet the requirements of Section <u>120.7</u>; and
 - B. Nonopaque envelopes shall have two or more glazings separated by either air or gas fill.

Interpretation:

- No single-film glazing, corrugated polycarbonate, or glass
- > Options:
 - Double-inflated polyethylene
 - Twin-wall polycarbonate and acrylic
 - Double or triple-pane glass

Heat Management: Screens and Curtains

Summer: Shade screens and coatings
 Blocks heat from entering greenhouse
 Reduces GH temp by 2-6°F (1-3°C)
 Reduces cooling by 20-40%
 Limit plant respiration and heat stress
 Winter: Thermal curtains

- Traps heat inside greenhouse
 Reduces heating by 20-30%
- Blackout Screens

Heat Management: Winter Heating

HEATING METHOD	EQUIPMENT TYPE	ENERGY SOURCE
Overhead	Unit heaters Hot water fan coils Radiant heaters	Fossil fuels
Perimeter Snow melt	Water/Steam Pipes Radiant	Fossil fuels
In-Aisle	Hot water pipes	Fossil fuels
Underbench/Root Zone	Heat mats Hot water pipes	Fossil fuels Electricity
Other	Lights Heat pumps	Electricity

Heat Management: Winter Heating

Heat Management: Summer Cooling

COOLING METHOD	EQUIPMENT TYPE	
Ventilation	Passive (wind and buoyancy) Mechanical (fans)	
Evaporative Cooling	Pad-and-fan (P&F) High-pressure fog (HPF)	
Air Conditioning	Split DX Packaged DX Chillers	
Root Zone Cooling	Irrigation water	
Shading	Shade screens Coating	

Ventilation

- > Air exchange between inside and outside
- > First stage of cooling
- > Benefits
 - Remove heat and moisture
 - Replenish CO₂
- > Air exchange rate depends on:
 - > Outside climate
 - Heating/Cooling equipment
- > Methods
 - Natural/passive ventilation
 - Mechanical ventilation

Natural Ventilation (NV)

<u>Passively</u> produced by **openings** in roof & walls
 Air moves in an out of GH by:
 Buoyancy ("chimney effect")
 Wind

Mechanical Ventilation (MV)

GOAL: Use fans to remove heat and moisture as quickly as it is produced/introduced into GH.

Mechanical Ventilation (MV)

> <u>Actively</u> produced by **fans**

GH: Fans pull air through vents located at opposite end of greenhouse, along side walls, or in roof
 WH: Fans deliver/extract air from WH using air registers at many locations

Evaporative Cooling

Simultaneous cooling and humidification
 Most effective in hot, dry climates
 Least effective in warm, humid climates

Common Methods
 Pad-and-Fan Cooling
 High-Pressure Fog Cooling
 Low-Pressure Mist

Pad-and-Fan

High-Pressure Fog

Water delivered into the GH, where it's evaporated
 Working Pressure = 7-14 MPa (1000-2000 psi)
 Very small water droplets (5-20 µm)
 Fast evaporation in the air

Note: Low-pressure-mist

- Working pressure < 0.4 MPa (50 psi)</p>
- > Large water droplets (> 100 μ m = 0.1 mm)
 - \rightarrow slow evaporation mostly on surfaces (plants, ground, etc)

High-Pressure Fog

Evaporative Cooling: Water Use and Climate Control

Increase Ventilation Rate
 →Increase Water Use
 →No Temp Improvement
 → Increased VPD

Strategic Design & Operation

- More is not always better!
- Improve Control
- Facilitate Plant Responses
- Reduce Water Use
- Reduce Energy Use

Figure 5.8 Mean daytime (08:00 - 17:00) plant zone air temperature (—■—), relative humidity (-0-), and vapor pressure deficit (…*…).

Sabeh, et al., 2007

Air Conditioning

Heat is transferred from air to cold refrigerant
Simultaneous cooling and dehumidification
Most effective in
Warehouses
Hot, humid climates
Common Systems:

Split System: Heat pump, VRF
Packaged DX
Chiller w/AHU

"DX" = Direct Expansion

Heat from air transfers to refrigerant, causing it to evaporate and "expand"

Air Conditioning – Split AC

Air Conditioning – Package DX

Refrigeration Cycle

Greenhouse Cooling Energy Use

Greenhouse in Oklahoma = 30x100x15 ft = 45,000 ft³

Greenhouse w/Pad & Fan Evaporative Cooling Airflow = 60 ACH = 45,000 CFM Thrip Screen: ESP = 0.1 in wg Light Traps: ESP = 0.15 in wg Total ESP = 0.25 in wg

New Fan Size = 7500 CFM Need 6 Fans = 45,000 CFM

Each Fan = 818 Watts Assume 50% operation

Fan Energy = 818 W x 6 fans x 50% (8760 hr/yr) Fan Energy = 21,500 kWh

Greenhouse in Oklahoma = 30x100x15 ft = 45,000 ft³

Greenhouse w/Pad & Fan Evaporative Cooling Airflow = 60 ACH = 45,000 CFM Thrip Screen: ESP = 0.1 in wg Light Traps: ESP = 0.15 in wg Total ESP = 0.25 in wg

New Fan Size = 7500 CFM Need 6 Fans = 45,000 CFM

Each Fan = 818 Watts Assume 50% operation

Fan Energy = 818 W x 6 fans x 50% (8760 hr/yr) Fan Energy = 21,500 kWh Fan Energy = 21,500 kWh x \$0.10/kWh Cost = \$2,150 year

Greenhouse in Oklahoma = 30x100x15 ft = 45,000 ft³

Greenhouse w/Air Conditioning

Air Conditioning = Cool + Dehumidification Pkgd DX Unit w/filters

AC Capacity = 100 tons = 1,200 MBH AC Operation = 75% duty cycle

AC Energy Use = 351.7 kW x 8760 hrs AC Energy Use = 2,310,000 kWH

Greenhouse in Oklahoma = 30x100x15 ft = 45,000 ft³

Greenhouse w/Air Conditioning

Air Conditioning = Cool + Dehumidification Pkgd DX Unit w/filters

AC Capacity = 100 tons = 1,200 MBH AC Operation = 75% duty cycle

AC Energy Use = 351.7 kW x 8760 hrs AC Energy Use = 2,310,000 kWH AC Energy = 2,310,000 kWh x \$0.10/kWh Cost = \$231,000 year!

Air Conditioning = 10x \$\$ Evaporative Cooling

Air Movement

- 1. Breaks up leaf boundary layer
- 2. Facilitates Evapotranspiration
- 3. Delivers CO₂
- 4. Eliminates waste
 - $-O_2$, H_2O , Heat
- 5. Prevents condensation
- 6. Discourages pests

Air Movement Methods

Carbon Dioxide Enrichment

- > Increase rate of photosynthesis
- > Optimize for levels of light & air temperature

Efficient Operating Strategies

Let's flatten the curve!

1. Lighting Management

Time of Year	Strategy	Pros	Cons
Winter	Supplemental Lighting	↑DLI ↓ Heat energy ↑ Winter Yield	↑ Lighting energy
Summer	Shading No lighting	 ↓ Heat stress ↓ Cooling energy ↓ Lighting energy 	↓ DLI ↓ Summer Yield

2. CO2 Management

Time of Year	Strategy	Pros	Cons
Winter	CO2 Enrichment	 ↑Photosynthesis ↑ Winter Yield ↓ Heating energy 	个 CO2 consumption
Summer	No CO2 Enrichment	↓ Save CO2↓ Cooling energy	↓ Summer Yield
Note: Summer yields and plant photosynthesis will already be high due to high sunlight levels			

3. Variable Speed Fans

Time of Year	Strategy	Pros	Cons
Winter	Low fan speed	 ↑ Uniformity ↑ Humidity control ↓ Plant shock ↓ Fan energy ↓ Heating energy ↓ CO2 use 	个 High cost for fans
Summer	High fan speed	↑ Heat removal	↑ Fan Energy ↑ CO2 use

Back to our initial questions

1. Can you grow consistently year-round?

2. Are GHs more sustainable than indoor grows?

3. Are GHs cheaper than indoor grows?

4. Can you grow the same quality crop as indoor?

Greenhouse Added-Value

Hedge Risks
 Mother Nature
 Market Variability
 Variability Advantage?

Prime Factors for Planning/Design

Crop/Product → Who's your market?
 Location → Where's your market?
 ROI & RUE

Crop/Product

Learn More!

> CBT Article (Oct 2022)

Operating Strategies to Increase Bottom Line
 "The Profit Denominator"

Greenhouse Podcast Series

April 18, 2023: 4 Energy Efficiency Tips for GHs
April 25, 2023: 6 Tips for Keeping GH Cool
May 2, 2023: 3 GH Trends to Watch

HVAC and Controls Workshops and Classess

ONLINE COURSES LIVE! HVAC & CONTROLS FOR INDOOR GROWS

SEPT 20 | OCT 25 | NOV 15

Learn how to master your crop's indoor grow environment from the HVAC expert herself, **Dr. Nadia Sabeh,** President and Founder of Dr. Greenhouse, Inc.

WHAT YOU'LL LEARN:

COURSE 1: KNOW YOUR GROW ROOM ENVIRONMENT

- Plant physiology basics
- Thermal energy balance
- HVAC equipment and selections
- Load calculation examples

COURSE 2: MANAGE YOUR GROW ROOM ENVIRONMENT

- Monitoring and controls
- · Sensors and data analysis
- · Efficient operating strategies
- Optimizing energy and water use

COURSE 3: INVEST IN YOUR GROW ROOM ENVIRONMENT

- Market and customer base
- Site selection and facility type
- Team and project management
- Maximizing ROI and unit economics

Dr. Nadia Sabeh, PE, LEED AP

nadia@doctorgreenhouse.com

916-775-3724

